The Science Data Processor and Regional Centre Overview

Paul Alexander

UK Science Director the SKA Organisation Leader the Science Data Processor Consortium

Welcome to this UK-SKA Meeting

For those of you who have not been to Cambridge for a few years you will notice some big changes, you are now in our new Astronomy Campus housing:

- IoA
- Cavendish Astrophysics
- Kavli Institute for Cosmology in Cambridge

New Battcock Centre for Experimental Astrophysics

SKA: A Leading Big Data Challenge for 2020 decade

SUARE KILOMETRE ARRAY

SCIENCE DATA PROCESSOR

<section-header>

Digital Signal Processing (DSP)

Transfer antennas to DSP 2020: 5,000 PBytes/day 2030: 100,000 PBytes/day

Over 10's to 1000's kms

HPC Processing 2020: 300 PFlop 2028: 30 EFlop To Process in HPC 2020: 50 PBytes/day 2030: 10,000 PBytes/day

Over 10's to 1000's kms

High Performance Computing Facility (HPC)

SDP Organisation

- Lead: •
- PM: ٠
- Deputy PM: ٠
- **PE/Architect:** •
- SE: •
- PS: •

Paul Alexander

Jeremy Coles

- Ian Cooper
- **Bojan Nikolic**
 - Ferdl Graser
 - **Rosie Bolton**

- COMP:
- PIP: •
- DATA: ٠
- DELIV: ٠
- LMC: ٠
- LINF: ٠

- Chris Broekema
- **Ronald Nijboer**
- Andreas Wicenec
- **Rob Simmonds**
- Simon Ratcliffe
- Jasper Horrel

- **PIP-Imaging:**
- **PIP-NIP:** •

Anna Scaife Ben Stappers

Standard interferometer

SCIENCE DATA PROCESSOR

Visibility:

V

$$(B) = E_1 E_2^*$$

= $I(s) \exp(i \omega B \cdot s/c)$

- Resolution determined by maximum baseline $\theta_{max} \sim \lambda / B_{max}$
- Field of View (FoV) determined by the size of each dish $\theta_{dish} \sim \lambda / D$

SKY Image

VERSITY OF

CAMBRIDGE

Challenge Very Dependent on Experiment

SQUARE KILOMETRE ARRAY

High Level Description

Correlator / Beamformer

One SDP Two Telescopes

SCIENCE DATA PROCESSOR

	Ingest (GB/s)
SKA1_Low	500
SKA1_Mid	1000

In total need to deploy eventually a system which is close to 0.5 EFlop of processing

... and regional centres

SCIENCE DATA PROCESSOR

Tiered Data Delivery Regiona Centre Region Centre Sub-set of Regiona Centre Archive **SDP Core Facility** Sub-set of South Africa Archive Sub-set of Cloud access Archive Data routing **SDP Core Facility** Australia Cloud Astronomer

Regional Centres

- Last Week SKA Board Formally adopted concept of SKA Regional Centres
 - Data products from SKA up to 1PB/day
 - Still a major Big Data challenge
 - New tools and ideas needed
 - Provide access to SKA Data Products and Processing Environment
 - Typically manage 300 PB data/yr
 - Provide access to ~ 100 PFlop processing
 - Provide user support
 - Other roles
 - Continued input to SKA Observatory software support and development Software Engineering Centre of Excellence
 - Development of framework for supporting Big Data challenge at Regional Centres
 - UK likely to be part of a European Centre using national infrastructures to provide the physical layer

Scope of the SDP

The SDP System

Architectural Approach

SCIENCE DATA PROCESSOR

- Main principles
- Ensure scalability (downwards mostly)
- Ensure affordability
- Ensure Maintainability
- Support current state-of-the-art algorithms
- Exploit data parallelism, frequency & other dimensions
- We have only two fundamental/bulk data structures
- Raster grids and key-value-value stream records [e.g. u,v,w, -> visibility]
- Emphasis is on the framework to manage the throughput
- Hardware platform will be replaced on a short duty cycle c.f. any HPC facility
- Algorithms and workflow will evolve as we learn about telescopes

Approach: Co-design of software and physical layer architectures

Approach, ob-design of solundie and physical layer aromicedates.

How do we get performance and manage data volume?

Key concepts:

- Exploit intrinsic data without strong coupling to the hardware Achieve suitable efficiency and in particular to load-balance the system;
- Separate domain-specific functionality from framework to give performance
- Represent pipeline as a graph showing data dependencies between components
- Components are the "tasks", but now explicitly specify all of their required inputs and outputs and their execution is driven by the availability of data
 - This explicitly limits messages across the whole pipeline
 - Minimise data movement through the system by analysing the data dependencies and determining where to run processing
- Load balancing and scalability by task-based approach
- Fault tolerant
 - restarting processing based on data dependencies and reallocation of work

Data Driven Architecture

Data Driven Architecture

Smaller FFT size at cost of data duplication 0

Pipelines as Graphs

SDP Data Flow Approach: Next Generation Data Science Engine?

SEUARE KILOMETRE ARRAY

Managing data and separating functionality

SCIENCE DATA PROCESSOR Control Layer Mota gata - UID Control Layer - OID Abstract Drop **Pipeline Component** Drop - URI Drop Framework Channel API Control - events Reference Local Telescope State View Drop **Pipeline Component** Local Sky Drop Control Layer Model **Processor Pipeline** Control Layer Channel API Component Channel API IO Layer Logging framework Data reference Process (Self-referentially transparent) **Drop Channel QA** Metrics Framework

Capability Execution framework QA Monitoring Pipeline processing and QA components Pipeline processing and QA components Pipeline processing and QA components Service Layer: LTS, LSM, QA and DLC Services Control and Monitoring Layer: Master Controller, Monitoring and Logging Platform Management and Infrastructure

Data Drop

Control Layer

Channel API

IO Layer

Data

The graph in operation

SCIENCE DATA PROCESSOR

CAMBRIDGE

Controlling SDP

SCIENCE DATA PROCESSOR

Important Services: Quality Assessment, Sky Models and Telescope State

Delivering Data

Hardware Platform

SCIENCE DATA PROCESSOR

LMC platform Management network switch <<interface>> ТΜ Preservation platform Bulk data network switch <<interface>> Processor platform Observatory switch switch <<interface>> nodes nodes CSP <<interface>> backup switch Delivery platform Low-latency Preservation and network delivery network

Data rates and processing increase by FACTOR ~100 for SKA2

3-30 EBytes / year of fully processed data for SKA2

Complex Network

Data Driven Architecture

- Further data parallelism in spatial indexing (UVW-space)
- o Use to balance memory bandwidth per node
- \circ Some overlap regions on target grids needed

FFT

Data Driven Architecture

