

Observation Management In the SKA Observatory

Alan Bridger, UK ATC/STFC

SKA Delivering the Science

Outline

- The Observation Management Team
- Telescope Manager
- Brief Definition
- Some concepts & Key challenges

- Process outline
- Planning & Scheduling
- Commensality

The Observation Management Team

Lead: UKATC, Edinburgh

 JAC (UKIRT/JCMT) Observing Systems (ORAC), > 10 years ALMA (ALMA-OT, Pipeline)

INAF (Trieste, Bologna)

- Virtual Observatory/databases/A&A
- SCISYS UK Ltd (Bristol)
- Task planning & scheduling experience (Space, Oil)

Persistent Systems Ltd (Pune, India)

Proposal Handling tools for GMRT, Astrosat, (TMT?)

Part of the *Telescope Manager* consortium led by NCRA, India (Yashwant Gupta).

What is Observation Management?

Provides support for the observing process from proposal handling, through detailed planning and observation design to data acquisition...

...and beyond: project tracking, observing logs, partner time allocation.

In general, provide software support for the scientific users and the Observatory operations staff.

All the expected processes of a modern, large astronomical observatory.

So what's different?

Operational Concepts

The Operational Concepts for the SKA outlines the idea of "One Observatory, Two Telescopes". Observation Management will be primarily at the Headquarters.

Key Requirements:

- PI proposals (including ToO)
- Large programmes (Key Science ~70%)
- Accessible to non-specialists
- Largely automatic operation
- Resource Planning (including SDP)
- Sub-arrays
- Commensal observing
- Response to transients
- Partner time tracking

Operational Concepts

SKA Observing will be based on the idea of "Scheduling Blocks" or SBs (cf. ALMA, Gemini, VLT, UKIRT, JCMT):

- Self-contained units of observing (calibrations incl.)
 Calibratable to a data product
- The "building blocks" of an observing plan (schedule)
- Proposals will outline "Science Goals"
- Detailed observation design creates SBs
- Planning creates long-, medium- and short-term plans
- The latter are executed at each telescope
- Rescheduled as required in case of ToO/VOEvents/ transients
- Data linked back to SBs and projects for provenance & tracking

Observation Management Process

TELESCOPE MANAGER

Observatory HQ Proposal Proposal ΡΙ **Reviewer Accepted Proposal** Coordination Long Term Plan Project + Operations SB Definition **Operations** Staff Planner Short Term Plan Project + **SB** Definition **TOO Events** Reports SB Scripts Telescope Start SB Operator SB Scripts Archive Telescope M&C Telescope Manager echnology Jincil **Telescope Sites**

Proposals, Projects & SBs

Expected number/size of proposal submissions ->

- Some support for non-specialists
- Assistance with time calculations
- Ensure only valid proposals are submitted
- Support for large programme creation
- Support for operations staff
 - $\circ~$ Reviewing, plan creation, project tracking
- Easy (at least semi-automatic) creation of scheduling blocks
 - $\circ~$ Simulated execution
- ALMA (~1600 proposals last time) does all this...

Planning and Scheduling

Key challenge is to construct (and execute) observing plans that:

- Maximise use of resources and science output
 - Including the sky, subarray use, commensality, receptors, CSP, SDP, environment
 - And ensuring the SDP resource is well exploited, but not overcommitted
- Ensure completion of highest priority projects, and of course Key Science projects
- Ensure partner shares are kept in balance (commensality implies > 100% utilisation)

Also operate execution of a short-term plan that responds to transient discoveries as required (internal and external) Science & Technology

Commensal Observing

Three types of commensality:

- data commensality: more than one project using same data product(s), different science goals;
- observing commensality: more than one project using same setup/field of sky, but different data products;
- multiplexed commensality: use of subarrays
 - $\circ~$ Same field of sky, different setups
 - Tied-beam arrays, different fields, different setups.

Software must:

- Identify SBs that may be observed commensally & join them
- Plan these observations (including the SDP resources)
- Ensure products are correctly linked to proposation Science & Technology
 Facilities Council

Summary & Some Thoughts

We've done this before, but the SKA presents some interesting new challenges (SDP, commensality)

And we have many questions yet:

- What are the science drivers for subarrays? (Beyond single project use)
- How many PI proposals do you think SKA1 will get?

Come and talk: Alan Bridger, Stewart Williams, Mark Nicol, Pamela Klaassen (or Antonio Chrysostomou, SKAO)

Questions/Comments?

