Computational synergies between LSST and SKA

www.lsst.ac.uk

Synergies between LSST & SKA

- Scientific synergies
 - Bacon et al (arXiv: 1501.03977) summarise synergies from cosmology, galaxy evolution, transients
 - UK in unique position to exploit the combination of SKA and LSST (and Euclid)
- Computational synergies (& complementarities)
 - Both technical and political/financial
 - Now is the time to start discussing details

LSST Basics

- Large optical survey telescope to be located in Chile
 - annular primary 6.5m effective; 9.6 sq. deg FOV
- Ten year survey from ~2022
- US-led: NSF + DoE (camera) plus foreign partners
- Four science themes
 - Probing dark energy and dark matter
 - Mapping the Milky Way
 - Exploring the transient optical sky
 - Taking an inventory of the solar system

system design: Ivezic et al (arXiv:0805.2366)

High-level survey requirements

Survey Property	Performance
Main Survey Area	18000 sq. deg.
Total visits per sky patch	825
Filter set	6 filters (ugrizy) from 320 to 1050nm
Single visit	2 x 15 second exposures
Single Visit Limiting Magnitude (5σ point source, AB)	u = 23.9; g = 25.0; r = 24.7; i = 24.0; z = 23.3; y = 22.1
Integrated limiting mag (5σ ps, AB)	u = 26.3; g = 27.5; r = 27.7; i = 27.0; z = 26.2; y = 24.9
Photometric calibration	< 2% absolute, < 0.5% repeatability & colors
Median delivered image quality	~ o.7 arcsec. FWHM
Transient processing latency	< 6o sec after last visit exposure
Data release	Full reprocessing of survey data annually 4

Data Products: Level 1 – nightly processing

Data Products: Level 2 – annual data release*

* Twice in Year 1

Data Products: Level 3 – user-created products

UK participation in LSST

LSST:UK Consortium

Defines the programme of work for...

Works on behalf of...

LSST:UK Science Centre (LUSC)

Timeline for LSST and LUSC

- 1 August 2014: start of construction project
- October 2019: telescope First Light
- October 2022: start of main survey operations
- September 2032: end of main survey

Phase A funding from PPRP

- £15M set aside for operations contribution
- Phase A programme (July 2015 March 2019)
 - LUSC-DAC (Data Access Centre prep): 6 staff-years
 - DAC testbed, Data Challenges, supporting LUSC-DEV (Edin)
 - LUSC-DEV (Level 3 prep/development): 16 staff-years
 - Weak lensing: sims., PSF, deblending, Euclid synergy (Man/Oxf/UCL)
 - Milky Way: star/galaxy separation, tidal stream detection (Cam)
 - Transients: alert handling, classification, cadence (QUB/UCL/Soton)
 - Solar System: postage stamps, lightcurves (QUB)
 - Sensor characterisation: image analysis systematics (Oxf)

UK Data Access Centre

- Supporting UK community's use of LSST data
- Provide access to Level 1 and 2 data products
 - Generated in the US and France
- Ingest and serve ancillary datasets
- Support running of Level 3 data analysis
 - Providing LSST software stack & environment
 - Providing compute and storage facilities
 - Operating helpdesk, etc
- Likely to be a coordinated network of DACs
 - Details unclear as yet...

UK DAC computational requirements

- DACs similar to the SKA Regional Centres
 - But with smaller computational requirements
- Expectations:
 - Database: ~2PB in 2022 growing to ~31PB in 2032
 - Images*: ~30-50PB flat file storage
 - Compute*: ~20 TFlops in 2022 → ~140TFlops in 2032

*Very uncertain: depend on science goals and degree of coordination between DAC network

UK LSST/SKA synergies

- Scientific pull
 - Joint analyses: e.g. weak lensing, transients
- Political/financial push
 - STFC want common computing infrastructure across the PPAN area
 - Extension of GridPP?...or something cloudy?
 - Both projects need to understand how well they could fit a generic model and whether they share specific requirements – e.g. multi-PB databases

UK LSST/SKA complementarities

- Focus on different computational challenges
 - SKA: bulk processing, data transport
 - LSST: large databases, high transient rates
- Can we share expertise?
- Can we coordinate astro requirements for proposed STFC computing infrastructure?

Summary

- Strong scientific synergies
 - Key contacts: Sarah Bridle (LSST:UK PS),
 David Bacon (LSST:UK SKA Liaison)
- Potential for technical collaboration
 - Key contacts: Bob Mann (LSST:UK PL),
 George Beckett (LSST:UK PM)
- Now is time to start discussing details
 - Plans for DACs and Regional Centres are taking shape
 - Future of STFC computing under discussion