
FAST IMAGING
FOR SLOW TRANSIENTS

Anna Scaife

2016/04/13

Jodrell Bank Centre for Astrophysics
University of Manchester

WHAT ARE SKA SLOW TRANSIENTS?

Slow Transients

Are transients that can be detected in the image plane, i.e.
still significant in snapshot images.

Transients are rare in terms of no. per steradian, therefore
imaging a large FOV is preferable.

Transients are expected to produce triggers/alerts for other
instruments – pipeline must run as close to real time as
possible.

Triggers are used to initiate other observations –
localisation is important.

THE SDP FAST IMAGING PIPELINE

Context

Context

The outputs from the SDP Fast Imager are:

A catalogue of variable sources (update to GSM)

VO alerts in ∼ real time

Functional Flow

The two major steps of the fast imaging pipeline are the
same as any imaging pipeline (probably).

The visibilities that will be gridded are differenced with
the Global Sky Model (GSM).

Transient sources are expected to be rare, therefore this
differenced sky will be sparse.

Overview

Generating images from radio data requires a very large
number of simple, repetitive calculations.

The run time scales with either the number of visibilities
(gridding, phase rotation) or the image size in pixels (FFT,
cleaning).

Functional Flow - Continuum

Vis.

Gridding

FFT

Image

Kernels

Example:
1 Hour observation

For continuum imaging,
visibilities are buffered
over the duration of the
observation and then
gridded together.

The FFT is done
(effectively) once.

Functional Flow - Fast

Example:
1 Hour observation

For fast imaging, visibilities stream continuously into the
pipeline at a snapshot cadence of ∼1 s

Overall the same number of visibilities are gridded.

The FFT is done 3600 times.

PROTOTYPING

FFT

Originally we thought that the FFT would be the limiting factor
for fast imaging.

We looked at non-traditional alternatives, like the Sparse FFT
algorithm.

Sparse FFT

5.4 s 1.9 s

240ms 36ms

2000 × 2000 cut-outs of 16384 × 16384 images

Sparse FFT

JVLA data 5ms snapshots (courtesy of Casey Law)

Sparse FFT

Likelihood is that we won’t need the Sparse FFT because
facetting will make the images small.

The facets will probably be necessary for local phase calibration
in the fast pipeline - otherwise the GSM differencing won’t
work effectively.

Proto-typing: Phase Rotation

Change the phase centre to a new phase position on the sky.
Two steps:

Rotate the u, v, w coordinates about the celestial sphere.
Apply a phase shift to the complex visibilities.

HIGHLY PARALLELIZABLE

Proto-typing: Gridding

Each visibility is placed onto the
’grid’, using a delta function at
the uv grid position convolved
with an N × N ’kernel’.

The kernel performs functions
such as w-projection,
anti-aliasing and A-projection.

Total number of operations =
Nsamples × Nchannels × N2

kernel.

HIGHLY PARALLELIZABLE

A-kernel

Proto-typing: w-Kernel

2D complex exponential function, required to correct for
non- coplanar baselines (i.e. visibilities with non-zero
w-coordinates)

The larger the w-value, the larger the kernel.

Proto-typing: w-Kernel

Proto-typing: Anti-aliasing Kernel

Prolate spheroidal function, required to prevent aliasing
effects due to finite resolution of uv grid.

Generated in the uv domain, and usually 7 × 7 pixels.

Convolution introduced in the uv
plane during gridding, and later
removed from the image plane by
dividing the dirty image by the
Fourier transform of the kernel.

V ∗ K � I × K̃

Proto-typing: Combined Kernel

The anti-aliasing and w-kernels
are multiplied together in the
image (lm) domain, and FFT’d
into the uv domain.

Equivalent to a convolution in the
uv domain.

Sky image must be divided to
remove the anti-aliasing kernel.

w-kernel does not need to be
compensated for.

PIPELINES, PITFALLS & PROGRESS

Demonstrator

Algorithms are ideally suited to a parallel architecture,
such as Graphics Processing Units (GPUs).

We (Chris Skipper) have constructed a GPU imager from
various SDP prototyping code – phase rotation, gridding,
image-plane reprojection, etc.

GPU Prototyping

Originally developed for
graphics cards – games,
animation, CAD, etc.

Designed to perform
simple mathematical
operations with very high
efficiency.

Highly suited to
performing scientific
tasks.

Figure: GPU Card

GPUs can contain many thousands of cores, but these are really
just arithmetic and logic units (ALUs) – much simpler than
CPU cores.

GPU Prototyping

Figure: Tesla K40

2,880 CUDA Cores

12 GB GPU RAM

235 W Power
Consumption

Cooled by passive heat
sink

CUDA Compute
Capability 3.5

PCI-e Interface

Max 1,024 threads per block

64 k Shared Mem / m’processor

Scatter Gridding

Kernels held as 2D texture maps

ALMA Test Simulation

ALMA Test Simulation: 86,400 visibilities

kernel size = 61 × 61

CPU [ms] GPU [ms] Speed-up
Gridding 13,337 41 330

FFT 228 2 110
(Hogbom Clean) 228 125 1.8

Kernel Generation

Kernel generation: These numbers do not include kernel
generation - generating kernels for 128 w-planes takes a further
3 s (GPU).

CONCLUSIONS

Conclusions

SKA Fast Imaging will produce a ∼ real time catalogue of
variable sources

SKA Fast Imaging will automatically produce alerts when
variability is detected

Fast Imaging will run at a cadence of approx. 1 s

An end-to-end prototype is being built and tested on real
data

	What are SKA slow transients?
	The SDP Fast Imaging Pipeline
	Prototyping
	Pipelines, Pitfalls & Progress
	Conclusions

	anm0:

