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Machine Learning (1)

• Collective term for branch of A.I.

• Uses statistical tools to make decisions over data ‘intelligently’.

• Appearance of intelligence is an illusion backed up by functions.

• So how does it work?
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Machine Learning & SDP

• SDP converts / filters CSP data in to products useful for science.

• Includes pulsar timing, single pulse search (transients signals, FRBs) 

and periodicity search (pulsars). 

• For single pulse and periodicity search, CSP data products describe 

potential observations of astrophysical phenomena - new discoveries?



Existing Approaches

• Applied to candidate selection for single pulse and periodicity search.

• Supervised machine learning algorithms.

• Learn from fixed-size training sets of examples.

• Variety of algorithms used, with varying computational requirements.
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Existing Approaches

• Applied to candidate selection for single pulse and periodicity search.

• Supervised machine learning algorithms.

• Learn from fixed-size training sets of examples.

• Variety of algorithms used, with varying computational requirements.



Which method?



Issues With ML at Scale



Issues with ML at SKA Scale

• ML typically very accurate if training data is good.

• Problems:

1. Not optimised to minimise resource use.

2. Non-adaptive, and retraining with more examples can be expensive 

(depending on the algorithm).

• Other issues: training data hard to obtain, classifier decisions often hard 

to audit.



• Adapting to distributional change advantageous.

• Rapidly adapting to new training examples important for discovery.
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Practical Issues with ML at SKA Scale (1)



 Chi squared value from fitting sine curve to pulse profile.
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• Performance issues 

due to imbalance.

• How to acquire 

training examples?

• How to incorporate 

expert feedback?

• How to audit 

classifications?

Structural Issues with ML at SKA Scale (2)



Exploring solutions



Possible SDP Approach

• Data stream learning methods.

• Very low resource requirements.

• Able to adapt to concept drift.

• Able to learn from new training examples observed over time.
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Incremental Stream Prototype
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Stream Classifier: GH-VFDT



Algorithm Performance

Other results in: “Hellinger Distance Trees for Imbalanced Streams”, Lyon et al., ICPR, 2014.

See “Fifty Years of Pulsar Candidate Selection: From simple filters to a new principled real-time classification 
approach”, Lyon et al, accepted for publication in MNRAS, 2016.



Prototype Performance

• Local tests on a single machine (Quad Core i7)

• 1,000 candidates per second

• Approx. 2 seconds for a candidate to move through the system.

• Relatively easy to configure & program.

• Possible problems:

• you may want to send more than a tuple.

• you may want data to go backwards.



Open Questions

• How to acquire unlimited supply of accurately labelled data?

• To what extent does pulsar data drift?

• Will a multi-class approach improve classification performance?

• What will the final compute environment look like?

• How do we keep track of training data and validate our approaches?

• Are our features good enough?



Summary

• Structural issues with ML at scale

• Practical issues with ML at scale

• Success depends on understanding the data

• Prototype pipelines under development

Thanks for listening!
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Candidate Numbers
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Apache Storm Cluster

Worker node
Supervisor

JVM

Worker Process

Executor Executor

…

…

Spout

Bolt

…

Bolt

JVM

Worker Process

Executor Executor

…

…

Spout

Bolt

…

Bolt

Worker node
Supervisor

JVM

Worker Process

Executor Executor

…

…

Spout

Bolt

…

Bolt

JVM

Worker Process

Executor Executor

…

…

Spout

Bolt

…

Bolt

Worker node
Supervisor

JVM
Worker Process

Executor Executor

…

…

Spout

Bolt

…

Bolt

JVM
Worker Process

Executor Executor

…

Spout

Bolt

…

Bolt

Master node
Nimbus

Zookeeper cluster
ZookeeperZookeeper Zookeeper

1
… n

…


