

Machine Learning & Science Data Processing

Rob Lyon

robert.lyon@manchester.ac.uk

SKA Group University of Manchester

Machine Learning (1)

- Collective term for branch of A.I.
- Uses statistical tools to make decisions over data 'intelligently'.
- Appearance of intelligence is an illusion backed up by functions.
- So how does it work?

Machine Learning (1)

- Collective term for branch of A.I.
- Uses statistical tools to make decisions over data 'intelligently'.
- Appearance of intelligence is an illusion backed up by functions.
- So how does it work?

$$f(x) \longrightarrow f(x)' \longrightarrow f(x)'' \longrightarrow f(x)'' \longrightarrow f(x)'' \longrightarrow f(x)'' \longrightarrow f(x)''$$

Observe Collect Data Build Model

Machine Learning (2)

Machine Learning & SDP

• SDP converts / filters CSP data in to products useful for science.

Machine Learning & SDP

• SDP converts / filters CSP data in to products useful for science.

• SDP converts / filters CSP data in to products useful for science.

Machine Learning & SDP

- SDP converts / filters CSP data in to products useful for science.
- Includes pulsar timing, single pulse search (transients signals, FRBs) and periodicity search (pulsars).

Machine Learning & SDP

- SDP converts / filters CSP data in to products useful for science.
- Includes pulsar timing, single pulse search (transients signals, FRBs) and periodicity search (pulsars).
- For single pulse and periodicity search, CSP data products describe potential observations of astrophysical phenomena - new discoveries?

Existing Approaches

- Applied to candidate selection for single pulse and periodicity search.
- Supervised machine learning algorithms.
- Learn from fixed-size training sets of examples.
- Variety of algorithms used, with varying computational requirements.

Existing Approaches

- Applied to candidate selection for single pulse and periodicity search.
- Supervised machine learning algorithms.
- Learn from fixed-size training sets of examples.
- Variety of algorithms used, with varying computational requirements.

Which method?

Issues With ML at Scale

- ML typically very accurate if training data is good.
- Problems:

- 1. Not optimised to minimise resource use.
- 2. Non-adaptive, and retraining with more examples can be expensive

(depending on the algorithm).

 Other issues: training data hard to obtain, classifier decisions often hard to audit.

Practical Issues with ML at SKA Scale (1)

- Adapting to distributional change advantageous.
- Rapidly adapting to new training examples important for discovery.

Sample number

Structural Issues with ML at SKA Scale (2)

- Performance issues due to imbalance.
- How to acquire training examples?
- How to incorporate expert feedback?
- How to audit classifications?

Exploring solutions

Possible SDP Approach

- Data stream learning methods.
- Very low resource requirements.
- · Able to adapt to concept drift.
- Able to learn from new training examples observed over time.

Incremental Stream Prototype

Stream Classifier: GH-VFDT

Algorithm Performance

Dataset	Algorithm	G-Mean	F-Score	Recall	Precision	Specificity	FPR	Accuracy
	C4.5	0.962*	0.839*	0.961	0.748	0.962	0.038	0.962
HTRU 1	MLP	0.976	0.891	0.976	0.820	0.975	0.025*	0.975
	NB	0.925	0.837*	0.877	0.801	0.975	0.025*	0.965
	SVM	0.967	0.922	0.947	0.898	0.988	0.012	0.984
	GH-VFDT	0.961*	0.941	0.928	0.955	0.995	0.005	0.988
	C4.5	0.926	0.740	0.904	0.635*	0.949*	0.051*	0.946*
HTRU 2	MLP	0.931	0.752	0.913	0.650*	0.950*	0.050*	0.947*
	NB	0.902	0.692	0.863	0.579	0.943	0.057	0.937
	SVM	0.919	0.789	0.871	0.723	0.969	0.031	0.961
	GH-VFDT	0.907	0.862	0.829	0.899	0.992	0.008	0.978
	C4.5	0.969	0.623	0.948	0.494	0.991	0.009	0.990
LOTAAS 1	MLP	0.988	0.846*	0.979	0.753	0.998	0.002	0.997*
	NB	0.977	0.782	0.959	0.673	0.996	0.004	0.996
	SVM	0.949	0.932	0.901	0.966	0.999*	0.001*	0.999
	GH-VFDT	0.888	0.830*	0.789	0.875	0.999*	0.001*	0.998*

See "Fifty Years of Pulsar Candidate Selection: From simple filters to a new principled real-time classification approach", Lyon et al, accepted for publication in MNRAS, 2016.

Other results in: "Hellinger Distance Trees for Imbalanced Streams", Lyon et al., ICPR, 2014.

Prototype Performance

- Local tests on a single machine (Quad Core i7)
- 1,000 candidates per second
- Approx. 2 seconds for a candidate to move through the system.
- Relatively easy to configure & program.
- Possible problems:
 - you may want to send more than a tuple.
 - you may want data to go backwards.

Open Questions

- How to acquire unlimited supply of accurately labelled data?
- To what extent does pulsar data drift?
- Will a multi-class approach improve classification performance?
- What will the final compute environment look like?
- How do we keep track of training data and validate our approaches?
- Are our features good enough?

Summary

- Structural issues with ML at scale
- Practical issues with ML at scale
- Success depends on understanding the data
- Prototype pipelines under development

Thanks for listening!

robert.lyon@manchester.ac.uk

Candidate Numbers

Survey	Year	Candidates	Per Sq. Degree
2nd Molonglo Survey(Manchester et al. 1978)	1977	2, 500	~0.1
Phase II survey (Stokes et al. 1986)	1983	5, 405	~1
Parkes 20 cm survey (Johnston et al. 1992)	1988	~ 150, 000	~188
Parkes Southern Pulsar Survey (Manchester et al. 1996)	1991	40, 000	~2
Parkes Multibeam Pulsar Survey (Manchester et al. 2001)	1997	8,000,000	~5,161
Swinburne Int. Lat. Survey (Edwards et al. 2001)	1998	> 200, 000	~168*
Arecibo P-Alfa all configurations (Cordes et al. 2006; Lazarus 2012; P-Alfa Consortium 2015)	2004	> 5, 000, 000	~16,361*
6.5 GHz Multibeam Survey (Bates et al. 2011a; Bates 2011)	2006	3, 500, 000	~77,778 †
GBNCC survey (Stovall et al. 2014)	2009	> 1, 200, 000	~89*
Southern HTRU (Keith et al. 2010)	2010	55, 434, 300	~1,705
Northern HTRU (Barr et al. 2013; Ng 2012)	2010	> 80, 000, 000	~2,890*
LOTAAS (Cooper, private communication, 2015)	2013	39, 000, 000	~2,000

Table 1. Reported folded candidate numbers. Note * indicates a lower bound on the number of candidates per square degree, calculated from incomplete candidate numbers. † indicates very long integration times, with further details supplied in Tables 2 & 3.

Apache Storm Cluster

